Fooling MOSS Detection with Pretrained Language Models
Stella Biderman and Edward Raff. "Fooling MOSS Detection with Pretrained Language Models." In the Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2933-2943, 2022
As artificial intelligence (AI) technologies become increasingly powerful and prominent in society, their misuse is a growing concern. In educational settings, AI technologies could be used by students to cheat on assignments and exams. In this paper we explore whether transformers can be used to solve introductory level programming assignments while bypassing commonly used AI tools to detect similarities between pieces of software. We find that a student using GPT-J [Wang and Komatsuzaki, 2021] can complete introductory level programming assignments without triggering suspicion from MOSS [Aiken, 2000], a widely used software similarity and plagiarism detection tool. This holds despite the fact that GPT-J was not trained on the problems in question and is not provided with any examples to work from. We further find that the code written by GPT-J is diverse in structure, lacking any particular tells that future plagiarism detection techniques may use to try to identify algorithmically generated code. We conclude with a discussion of the ethical and educational implications of large language models and directions for future research.