NeurIPS Datasets and Benchmarks Stella Biderman NeurIPS Datasets and Benchmarks Stella Biderman

LAION-5B: An open large-scale dataset for training next generation image-text models

Schuhmann, et al. (incl. Crowson). "LAION-5B: An open large-scale dataset for training next generation image-text models." Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. Outstanding Paper Award.

Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page this URL.

Read More
ECCV Stella Biderman ECCV Stella Biderman

VQGAN-CLIP: Open domain image generation and editing

Katherine Crowson*, Stella Biderman*, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Castricato, and Edward Raff. “VQGAN-CLIP: Open Domain Image Generation and Editing with Natural Language Guidance.” In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

Generating and editing images from open domain text prompts is a challenging task that heretofore has required expensive and specially trained models. We demonstrate a novel methodology for both tasks which is capable of producing images of high visual quality from text prompts of significant semantic complexity without any training by using a multimodal encoder to guide image generations. We demonstrate on a variety of tasks how using CLIP [37] to guide VQGAN [11] produces higher visual quality outputs than prior, less flexible approaches like DALL-E [38], GLIDE [33] and Open-Edit [24], despite not being trained for the tasks presented. Our code is available in a public repository.

Read More
arXiv Stella Biderman arXiv Stella Biderman

LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, Aran Komatsuzaki. "LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs." arXiv preprint arXiv: 2111.02114, 2021

Multi-modal language-vision models trained on hundreds of millions of image-text pairs (e.g. CLIP, DALL-E) gained a recent surge, showing remarkable capability to perform zero- or few-shot learning and transfer even in absence of per-sample labels on target image data. Despite this trend, to date there has been no publicly available datasets of sufficient scale for training such models from scratch. To address this issue, in a community effort we build and release for public LAION-400M, a dataset with CLIP-filtered 400 million image-text pairs, their CLIP embeddings and kNN indices that allow efficient similarity search.

Read More