arXiv Stella Biderman arXiv Stella Biderman

Neural networks learn moments of increasing order

The distributional simplicity bias (DSB) posits that neural networks learn low-order moments of the data distribution first, before moving on to higher-order correlations. In this work, we present compelling new evidence for the DSB by showing that networks automatically learn to perform well on maximum-entropy distributions whose low-order statistics match those of the training set early in training, then lose this ability later. We also extend the DSB to discrete domains by proving an equivalence between token n-gram frequencies and the moments of embedding vectors, and by finding empirical evidence for the bias in LLMs. Finally we use optimal transport methods to surgically edit the low-order statistics of one class to match those of another, and show that early-training networks treat the edited samples as if they were drawn from the target class. Code is available at this https URL.

Read More
NeurIPS Workshop (Backdoors in DL) Stella Biderman NeurIPS Workshop (Backdoors in DL) Stella Biderman

Detecting Backdoors with Meta-Models

It is widely known that it is possible to implant backdoors into neural networks, by which an attacker can choose an input to produce a particular undesirable output (e.g. misclassify an image). We propose to use meta-models, neural networks that take another network's parameters as input, to detect backdoors directly from model weights. To this end we present a meta-model architecture and train it on a dataset of ~4000 clean and backdoored CNNs trained on CIFAR-10. Our approach is simple and scalable, and is able to detect the presence of a backdoor with accuracy when the test trigger pattern is i.i.d., with some success even on out-of-distribution backdoors.

Read More
NeurIPS (Spotlight) Stella Biderman NeurIPS (Spotlight) Stella Biderman

Reconstructing the Mind's Eye: fMRI-to-Image with Contrastive Learning and Diffusion Priors

We present MindEye, a novel fMRI-to-image approach to retrieve and reconstruct viewed images from brain activity. Our model comprises two parallel submodules that are specialized for retrieval (using contrastive learning) and reconstruction (using a diffusion prior). MindEye can map fMRI brain activity to any high dimensional multimodal latent space, like CLIP image space, enabling image reconstruction using generative models that accept embeddings from this latent space. We comprehensively compare our approach with other existing methods, using both qualitative side-by-side comparisons and quantitative evaluations, and show that MindEye achieves state-of-the-art performance in both reconstruction and retrieval tasks. In particular, MindEye can retrieve the exact original image even among highly similar candidates indicating that its brain embeddings retain fine-grained image-specific information. This allows us to accurately retrieve images even from large-scale databases like LAION-5B. We demonstrate through ablations that MindEye's performance improvements over previous methods result from specialized submodules for retrieval and reconstruction, improved training techniques, and training models with orders of magnitude more parameters. Furthermore, we show that MindEye can better preserve low-level image features in the reconstructions by using img2img, with outputs from a separate autoencoder. All code is available on GitHub.

Read More
JASA Stella Biderman JASA Stella Biderman

Musical audio samples generated from joint text embeddings

Zach Evans, Scott Hawley, and Katherine Crowson. "Musical audio samples generated from joint text embeddings." The Journal of the Acoustical Society of America 152, A178 (2022)

The field of machine learning has benefited from the appearance of diffusion-based generative models for images and audio. While text-to-image models have become increasingly prevalent, text-to-audio generative models are currently an active area of research. We present work on generating short samples of musical instrument sounds generated by a model which was conditioned on text descriptions and the file structure labels of large sample libraries. Preliminary findings indicate that generation of wide-spectrum sounds such as percussion are not difficult, while the generation of harmonic musical sounds presents challenges for audio diffusion models.

Read More
arXiv Stella Biderman arXiv Stella Biderman

RoentGen: Vision-Language Foundation Model for Chest X-ray Generation

Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier Van der Sluijs, Małgorzata Połacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shivanshu Purohit, Curtis P. Langlotz, Akshay Chaudhari. "RoentGen: Vision-Language Foundation Model for Chest X-ray Generation." arXiv preprint arXiv:2211.12737 (2022)

Multimodal models trained on large natural image-text pair datasets have exhibited astounding abilities in generating high-quality images. Medical imaging data is fundamentally different to natural images, and the language used to succinctly capture relevant details in medical data uses a different, narrow but semantically rich, domain-specific vocabulary. Not surprisingly, multi-modal models trained on natural image-text pairs do not tend to generalize well to the medical domain. Developing generative imaging models faithfully representing medical concepts while providing compositional diversity could mitigate the existing paucity of high-quality, annotated medical imaging datasets. In this work, we develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays (CXR) and their corresponding radiology (text) reports. We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts. We assess the model outputs quantitatively using image quality metrics, and evaluate image quality and text-image alignment by human domain experts. We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images, and that the output can be controlled to a new extent by using free-form text prompts including radiology-specific language. Fine-tuning this model on a fixed training set and using it as a data augmentation method, we measure a 5% improvement of a classifier trained jointly on synthetic and real images, and a 3% improvement when trained on a larger but purely synthetic training set. Finally, we observe that this fine-tuning distills in-domain knowledge in the text-encoder and can improve its representation capabilities of certain diseases like pneumothorax by 25%.

Read More
bioXriv Stella Biderman bioXriv Stella Biderman

OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization

Gustaf Ahdritz, Nazim Bouatta, et al. (incl. Stella Biderman). "OpenFold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization." bioRxiv 2022.11.20.517210, 2022

AlphaFold2 revolutionized structural biology with the ability to predict protein structures with exceptionally high accuracy. Its implementation, however, lacks the code and data required to train new models. These are necessary to (i) tackle new tasks, like protein-ligand complex structure prediction, (ii) investigate the process by which the model learns, which remains poorly understood, and (iii) assess the model’s generalization capacity to unseen regions of fold space. Here we report OpenFold, a fast, memory-efficient, and trainable implementation of AlphaFold2, and OpenProteinSet, the largest public database of protein multiple sequence alignments. We use OpenProteinSet to train OpenFold from scratch, fully matching the accuracy of AlphaFold2. Having established parity, we assess OpenFold’s capacity to generalize across fold space by retraining it using carefully designed datasets. We find that OpenFold is remarkably robust at generalizing despite extreme reductions in training set size and diversity, including near-complete elisions of classes of secondary structure elements. By analyzing intermediate structures produced by OpenFold during training, we also gain surprising insights into the manner in which the model learns to fold proteins, discovering that spatial dimensions are learned sequentially. Taken together, our studies demonstrate the power and utility of OpenFold, which we believe will prove to be a crucial new resource for the protein modeling community.

Read More
NeurIPS Datasets and Benchmarks Stella Biderman NeurIPS Datasets and Benchmarks Stella Biderman

LAION-5B: An open large-scale dataset for training next generation image-text models

Schuhmann, et al. (incl. Crowson). "LAION-5B: An open large-scale dataset for training next generation image-text models." Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. Outstanding Paper Award.

Groundbreaking language-vision architectures like CLIP and DALL-E proved the utility of training on large amounts of noisy image-text data, without relying on expensive accurate labels used in standard vision unimodal supervised learning. The resulting models showed capabilities of strong text-guided image generation and transfer to downstream tasks, while performing remarkably at zero-shot classification with noteworthy out-of-distribution robustness. Since then, large-scale language-vision models like ALIGN, BASIC, GLIDE, Flamingo and Imagen made further improvements. Studying the training and capabilities of such models requires datasets containing billions of image-text pairs. Until now, no datasets of this size have been made openly available for the broader research community. To address this problem and democratize research on large-scale multi-modal models, we present LAION-5B - a dataset consisting of 5.85 billion CLIP-filtered image-text pairs, of which 2.32B contain English language. We show successful replication and fine-tuning of foundational models like CLIP, GLIDE and Stable Diffusion using the dataset, and discuss further experiments enabled with an openly available dataset of this scale. Additionally we provide several nearest neighbor indices, an improved web-interface for dataset exploration and subset generation, and detection scores for watermark, NSFW, and toxic content detection. Announcement page this URL.

Read More
ECCV Stella Biderman ECCV Stella Biderman

VQGAN-CLIP: Open domain image generation and editing

Katherine Crowson*, Stella Biderman*, Daniel Kornis, Dashiell Stander, Eric Hallahan, Louis Castricato, and Edward Raff. “VQGAN-CLIP: Open Domain Image Generation and Editing with Natural Language Guidance.” In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

Generating and editing images from open domain text prompts is a challenging task that heretofore has required expensive and specially trained models. We demonstrate a novel methodology for both tasks which is capable of producing images of high visual quality from text prompts of significant semantic complexity without any training by using a multimodal encoder to guide image generations. We demonstrate on a variety of tasks how using CLIP [37] to guide VQGAN [11] produces higher visual quality outputs than prior, less flexible approaches like DALL-E [38], GLIDE [33] and Open-Edit [24], despite not being trained for the tasks presented. Our code is available in a public repository.

Read More
arXiv Stella Biderman arXiv Stella Biderman

LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, Aran Komatsuzaki. "LAION-400M: Open Dataset of CLIP-Filtered 400 Million Image-Text Pairs." arXiv preprint arXiv: 2111.02114, 2021

Multi-modal language-vision models trained on hundreds of millions of image-text pairs (e.g. CLIP, DALL-E) gained a recent surge, showing remarkable capability to perform zero- or few-shot learning and transfer even in absence of per-sample labels on target image data. Despite this trend, to date there has been no publicly available datasets of sufficient scale for training such models from scratch. To address this issue, in a community effort we build and release for public LAION-400M, a dataset with CLIP-filtered 400 million image-text pairs, their CLIP embeddings and kNN indices that allow efficient similarity search.

Read More
Journal of Computational Chemistry Stella Biderman Journal of Computational Chemistry Stella Biderman

MP-NeRF: A Massively Parallel Method for Accelerating Protein Structure Reconstruction from Internal Coordinates

Eric Alcaide, Stella Biderman, Amalio Telenti, and M. Cyrus Maher. “MP-NeRF: A Massively Parallel Method for Accelerating Protein Structure Reconstruction from Internal Coordinates.” Journal of Computational Chemistry, 2021.

The conversion of proteins between internal and cartesian coordinates is a limiting step in many pipelines, such as molecular dynamics simulations and machine learning models. This conversion is typically carried out by sequential or parallel applications of the Natural extension of Reference Frame (NeRF) algorithm. This work proposes a massively parallel NeRF implementation which, depending on the polymer length, achieves speedups between 400 and 1200× over the previous state-of-the-art. It accomplishes this by dividing the conversion into three main phases: parallel composition of the monomer backbone, assembly of backbone subunits, and parallel elongation of sidechains; and by batching these computations into a minimal number of efficient matrix operations. Special emphasis is placed on reusability and ease of use. We open source the code (available at https://github.com/EleutherAI/mp_nerf) and provide a corresponding python package.

Read More