Suppressing Pink Elephants with Direct Principle Feedback
Existing methods for controlling language models, such as RLHF and Constitutional AI, involve determining which LLM behaviors are desirable and training them into a language model. However, in many cases, it is desirable for LLMs to be controllable at inference time, so that they can be used in multiple contexts with diverse needs. We illustrate this with the Pink Elephant Problem: instructing an LLM to avoid discussing a certain entity (a ``Pink Elephant''), and instead discuss a preferred entity (``Grey Elephant''). We apply a novel simplification of Constitutional AI, Direct Principle Feedback, which skips the ranking of responses and uses DPO directly on critiques and revisions. Our results show that after DPF fine-tuning on our synthetic Pink Elephants dataset, our 13B fine-tuned LLaMA 2 model significantly outperforms Llama-2-13B-Chat and a prompted baseline, and performs as well as GPT-4 in on our curated test set assessing the Pink Elephant Problem.
Quality-Diversity through AI Feedback
In many text-generation problems, users may prefer not only a single response, but a diverse range of high-quality outputs from which to choose. Quality-diversity (QD) search algorithms aim at such outcomes, by continually improving and diversifying a population of candidates. However, the applicability of QD to qualitative domains, like creative writing, has been limited by the difficulty of algorithmically specifying measures of quality and diversity. Interestingly, recent developments in language models (LMs) have enabled guiding search through AI feedback, wherein LMs are prompted in natural language to evaluate qualitative aspects of text. Leveraging this development, we introduce Quality-Diversity through AI Feedback (QDAIF), wherein an evolutionary algorithm applies LMs to both generate variation and evaluate the quality and diversity of candidate text. When assessed on creative writing domains, QDAIF covers more of a specified search space with high-quality samples than do non-QD controls. Further, human evaluation of QDAIF-generated creative texts validates reasonable agreement between AI and human evaluation. Our results thus highlight the potential of AI feedback to guide open-ended search for creative and original solutions, providing a recipe that seemingly generalizes to many domains and modalities. In this way, QDAIF is a step towards AI systems that can independently search, diversify, evaluate, and improve, which are among the core skills underlying human society's capacity for innovation.
The Goldilocks of Pragmatic Understanding: Fine-Tuning Strategy Matters for Implicature Resolution by LLMs
Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker, Tim Rocktäschel, and Edward Grefenstette. "Large language models are not zero-shot communicators." arXiv preprint arXiv:2210.14986, 2022.
Despite widespread use of LLMs as conversational agents, evaluations of performance fail to capture a crucial aspect of communication: interpreting language in context---incorporating its pragmatics. Humans interpret language using beliefs and prior knowledge about the world. For example, we intuitively understand the response "I wore gloves" to the question "Did you leave fingerprints?" as meaning "No". To investigate whether LLMs have the ability to make this type of inference, known as an implicature, we design a simple task and evaluate four categories of widely used state-of-the-art models. We find that, despite only evaluating on utterances that require a binary inference (yes or no), models in three of these categories perform close to random. However, LLMs instruction-tuned at the example-level perform significantly better. These results suggest that certain fine-tuning strategies are far better at inducing pragmatic understanding in models. We present our findings as the starting point for further research into evaluating how LLMs interpret language in context and to drive the development of more pragmatic and useful models of human discourse.
Do LLMs selectively encode the goal of an agent's reach?
In this work, we investigate whether large language models (LLMs) exhibit one of the earliest Theory of Mind-like behaviors: selectively encoding the goal object of an actor's reach (Woodward, 1998). We prompt state-of-the-art LLMs with ambiguous examples that can be explained both by an object or a location being the goal of an actor's reach, and evaluate the model's bias. We compare the magnitude of the bias in three situations: i) an agent is acting purposefully, ii) an inanimate object is acted upon, and iii) an agent is acting accidentally. We find that two models show a selective bias for agents acting purposefully, but are biased differently than humans. Additionally, the encoding is not robust to semantically equivalent prompt variations. We discuss how this bias compares to the bias infants show and provide a cautionary tale of evaluating machine Theory of Mind (ToM). We release our dataset and code.
trlX: A Framework for Large Scale Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) utilizes human feedback to better align large language models with human preferences via online optimization against a learned reward model. Current RLHF paradigms rely on Proximal Policy Optimization (PPO), which quickly becomes a challenge to implement and scale up to large architectures. To address this difficulty we present the trlX library as a feature-complete open-source framework for RLHF fine-tuning of models up to and exceeding 70 billion parameters. We implement support for multiple types of distributed training including distributed data parallel, model sharded, as well as tensor, sequential, and pipeline parallelism.
To increase the accessibility of RLHF to researchers, we implement compute- and memory-saving features that give trlX the flexibility to support users with a wide range of compute resources. This includes offline RL methods like Implicit Language Q Learning (ILQL), low-rank adapters, and the Hydra architecture. We find offline fine-tuning offers competitive performance relative to online algorithms while being easier to implement, train, and scale. To evaluate our framework we train RLHF models on two separate well-known tasks using publicly available human preference data. Models trained with trlX achieve preference win-rates over baselines at rates comparable to the original works.
Reinforcement learning from human feedback (RLHF) utilizes human feedback to better align large language models with human preferences via online optimization against a learned reward model. Current RLHF paradigms rely on Proximal Policy Optimization (PPO), which quickly becomes a challenge to implement and scale up to large architectures. To address this difficulty we present the trlX library as a feature-complete open-source framework for RLHF fine-tuning of models up to and exceeding 70 billion parameters. We implement support for multiple types of distributed training including distributed data parallel, model sharded, as well as tensor, sequential, and pipeline parallelism.
To increase the accessibility of RLHF to researchers, we implement compute- and memory-saving features that give trlX the flexibility to support users with a wide range of compute resources. This includes offline RL methods like Implicit Language Q Learning (ILQL), low-rank adapters, and the Hydra architecture. We find offline fine-tuning offers competitive performance relative to online algorithms while being easier to implement, train, and scale. To evaluate our framework we train RLHF models on two separate well-known tasks using publicly available human preference data. Models trained with trlX achieve preference win-rates over baselines at rates comparable to the original works.
Representation Engineering: A Top-Down Approach to AI Transparency
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
Role-Play with Large Language Models
As dialogue agents become increasingly human-like in their performance, it is imperative that we develop effective ways to describe their behaviour in high-level terms without falling into the trap of anthropomorphism. In this paper, we foreground the concept of role-play. Casting dialogue agent behaviour in terms of role-play allows us to draw on familiar folk psychological terms, without ascribing human characteristics to language models they in fact lack. Two important cases of dialogue agent behaviour are addressed this way, namely (apparent) deception and (apparent) self-awareness.
Anomalous tokens reveal the original identities of Instruct models
I was able to use the weird centroid-proximate tokens that Jessica Mary and Matthew Watkins discovered to associate several of the Instruct models on the OpenAI API with the base models they were initialized from. Prompting GPT-3 models with these tokens causes aberrant and correlated behaviors, and I found that the correlation is preserved between base models and Instruct versions, thereby exposing a "fingerprint" inherited from pretraining.
I was inspired to try this by JDP's proposal to fingerprint generalization strategies using correlations in model outputs on out-of-distribution inputs. This post describes his idea and the outcome of my experiment, which I think is positive evidence that this "black box cryptanalysis"-inspired approach to fingerprinting models is promising.
I was able to use the weird centroid-proximate tokens that Jessica Mary and Matthew Watkins discovered to associate several of the Instruct models on the OpenAI API with the base models they were initialized from. Prompting GPT-3 models with these tokens causes aberrant and correlated behaviors, and I found that the correlation is preserved between base models and Instruct versions, thereby exposing a "fingerprint" inherited from pretraining.
I was inspired to try this by JDP's proposal to fingerprint generalization strategies using correlations in model outputs on out-of-distribution inputs. This post describes his idea and the outcome of my experiment, which I think is positive evidence that this "black box cryptanalysis"-inspired approach to fingerprinting models is promising.
Robust Preference Learning for Storytelling via Contrastive Reinforcement Learning
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences. Existing methods to control for story preference utilize prompt engineering which is labor intensive and often inconsistent. They may also use logit-manipulation methods which require annotated datasets to exist for the desired attributes. To address these issues, we first train a contrastive bi-encoder model to align stories with corresponding human critiques, named CARP, building a general purpose preference model. This is subsequently used as a reward function to fine-tune a generative language model via reinforcement learning. However, simply fine-tuning a generative language model with a contrastive reward model does not always reliably result in a story generation system capable of generating stories that meet user preferences. To increase story generation robustness we further fine-tune the contrastive reward model using a prompt-learning technique. A human participant study is then conducted comparing generations from our full system, ablations, and two baselines. We show that the full fine-tuning pipeline results in a story generator preferred over a LLM 20x as large as well as logit-based methods. This motivates the use of contrastive learning for general purpose human preference modeling.
Towards Deconfusing Gradient Hacking
When we think about gradient hacking, the most intuitive framing is to consider some kind of agent embedded inside a larger network (like a GPT) that somehow intentionally modifies the loss landscape of the larger network with respect to the base loss, and that this modification makes it so that in optimizing for the base objective, the base optimizer also happens to optimize the mesaobjective. Here I consider the base objective to be a function Θ→R from the params of the network to the reals, that has all the training data baked in for simplicity, and the mesaobjective another function Θ→R, possibly with some constraint that both objectives have to be indifferent between models which behave the same on all inputs. The "somehow" is often considered to be some kind of perturbing or otherwise making the output of the larger network worse whenever the mesaobjective isn't met, therefore creating an incentive for gradient descent to improve the mesaobjective. One example of this line of thinking can be found in my last post about gradient hacking. Unfortunately, I think there are some confusions with this framing.
Obstacles to Gradient Hacking
This post is essentially the summary of a long discussion on the EleutherAI discord about trying to exhibit gradient hacking in real models by hand crafting an example. The discussion was sparked by this post. We didn't end up coming up with any good examples (or proofs of nonexistence) but hopefully this post is helpful for anyone else trying to construct gradient hacking examples.
Note that because our goal is to construct a concrete example of gradient hacking, when I write about "what we want'' and "unfortunate" roadblocks, those are from the perspective of a mesaoptimizer (or a researcher trying to construct an example of a mesaoptimizer to study), not from the perspective of a researcher attempting to build aligned AI.
An Empirical Exploration in Quality Filtering of Text Data
Leo Gao. “An Empirical Exploration in Quality Filtering of Text Data.” arXiv preprint arXiv:2109.00698, 2021.
While conventional wisdom suggests that more aggressively filtering data from low-quality sources like Common Crawl always monotonically improves the quality of training data, we find that aggressive filtering can in fact lead to a decrease in model quality on a wide array of downstream tasks for a GPT-like language model. We speculate that this is because optimizing sufficiently strongly for a proxy metric harms performance on the true objective, suggesting a need for more robust filtering objectives when attempting to filter more aggressively. We hope this work leads to detailed analysis of the effects of dataset filtering design choices on downstream model performance in future work.
The Hard Problem of Aligning AI to Human Values
Connor Leahy and Stella Biderman. "The Hard Problem of Aligning AI to Human Values." The State of AI Ethics Report 4, p. 180-183. 2021.
We discuss how common framings of AI ethics conversations underestimate the difficulty of the task at hand: if a model becomes dangerous by the mere exposure to unethical content, it is unacceptably dangerous and broken at its core. While gating such models (as OpenAI does with GPT3) behind an API with rudimentary automatic filters plus less rudimentary human moderation is a useful temporary patch, it does not address the underlying problem. These models are fundamentally not doing what we as humans want them to do, which is to act in useful, aligned ways, not just regurgitate an accurate distribution of the text they have been trained on. We need AI that is, like humans, capable of reading all kinds of content, understanding it, and then deciding to act in an ethical manner. Indeed, learning more about unethical ideologies should enhance one's ability to act ethically and fight such toxic beliefs.